
www.ijcrt.org © 2018 IJCRT | Volume 6, Issue 1 March 2018 | ISSN: 2320-2882

IJCRT1801590 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 427

Review for Best Multidimensional Index Structure

Ochin Sharma, Krishan Kumar

Manav Rachna International University, Faridabad, India

Abstract: Whenever we deal with the one dimensional data,

it is straight forward but when it comes to dealing with

multidimensional data; several challenges appears regarding

storage, operational optimization and performance. A lot of

work has been carried out for flawless storing, inserting and

deleting of high dimensional data that is indeed huge and

very large and to be getting accommodated in an efficient

manner for optimized performance. ‘R tree’ and its variants

are very useful to process multidimensional data. In this

paper, a research work has been carried out o survey various

‘R Tree variants’ to process multidimensional data objects.

Index Terms—Tree, Index, Multidimensional, R-Tree,

PR Tree

I. INTRODUCTION

One dimensional index structures assume a single search

key, and retrieve records that match a given search-key

value. (The search key can be a single field or a combination

of fields). Many applications, e.g. CAD, OLAP, multimedia

require us to view data as two or more dimensions [4,5].

The queries to be supported on such data are partial-match

queries: specify values for a subset of the dimensions, range

queries: give the range for each dimension, nearest-neighbor

queries: ask for the closest point to the given point. The

possible solution can be:

A. Brute force

All cordinates are arranges sequentially and searched.

B. Projection

 All cordinates are sorted on the basis of any criteria or

attribute and arranged sequentialy.

C. Multikey access

In this we reference the records R in file F by using any

possible subset of these fields (key), as shown in the

following examples:

a) Entire record specified (exact match query, point

query)

b) ‘Rohit’ named person born in 1951 (a partially

specified query)

c) All records with last name ‘Kumar’ (single-key query)

d) Multimedia all objects within specified coordinates.

e) Everyone born between 1920 and 1927 (range or

interval query)

In space each of the regions can be thought of as a rectangle,

and each of the points in that region has its record placed in a

block belonging to that rectangle [6]. If needed, overflow

blocks can be used to increase the size of a rectangle.

Consider a 2D data as:

Fig 1

Fig 2

II. VARIOUS INDEXED STRUCTURES

A) R Tree

R-trees are data structures used for indexing multi-

dimensional information such as geological coordinates,

rectangles and polygons. The R-tree was projected by

Antonin Guttman in 1984 and has originated significant

use in both theoretical and practical contexts. The real

world application of an R-tree might be to store high

dimensional data or spatial objects such as hospital

locations or the specific maps of roads, buildings,

markets or nearby restaurants etc. and then find answers

quickly to queries such as to find all restaurants within 2

km of the current location and to display the navigation

path[1].

 Actually R-tree has two main disadvantages as:

1. The execution of a point location query in an R-

tree may lead to the investigation of several paths

from the root to the leaf level. This characteristic

may lead to performance deterioration, specifically

when the overlap of the MBRs is significant.

2. A few large rectangles may increase the degree of

overlap significantly, leading to performance

http://en.wikipedia.org/wiki/Rectangle
http://en.wikipedia.org/wiki/Polygon

www.ijcrt.org © 2018 IJCRT | Volume 6, Issue 1 March 2018 | ISSN: 2320-2882

IJCRT1801590 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 428

degradation during range query execution, due to

empty space.

Fig 3: MBR representation in Rtree scheme

Fig 4: Indexed structure in RTree

B) The Rtree

Rtrees [2] are a structure that avoids visiting

multiple paths during point location queries, and

thus the retrieval performance is improved. In

addition, MBR overlapping of internal modes is

avoided.

This is achieved using the clipping technique.

Rtree does not allow overlapping of MBRs at the

same level of tree.

Algorithm Insert (R, IR)

Input:An Rtree rooted at node R and an input rectangle

IR

Output:

The new Rtree that results after the insertion of IR

Procedure:

Find where IR should go and add it to the

corresponding leaf nodes.

1. If R is not a leaf, then for each entry (p, RECT) of R

check if RECT overlaps IR. If so,

Insert (CHILD, IR), where CHILD is the node

pointed to by p.

2. If R is a leaf, add IR in R. If after the new rectangle

is inserted R has more than M entries, SplitNode(R)

to re-organize the tree

Algorithm Search (R, W)

Input:

An R- tree rooted at node R and a search window

(Rectangle) W

Output:

All data objects overlapping W

Procedure:

Decompose search space and recursively search tree

1. [Search Intermediate Nodes]

If R is not a leaf, then for each entry (p, RECT) of R

check if RECT overlaps W. If so,

Search(CHILD,W RECT), where CHILD is the node

pointed to by p.

2. [Search Leaf Nodes]

If R is a leaf, check all objects RECT in R and return

those that overlap with W.

At some stage in the implementation of the insertion

algorithm a node may become full, therefore no further

entries can be store in it. So for this, a node splitting method

is necessary the same as in the R-tree case. The major

difference between the Rtree split algorithm and that of the

R-tree is that downward chaining may be necessary, as well

as the upward chaining.Recollect that in the R-tree, upward

chaining is enough to guarantee the structure’s integrity.

C) The R*-tree

R*trees [3] were projected in 1990 but are very well

accepted in today’s literature as a existing performance-wise

structure that is Many times used for performance

comparisons. As discussed, the R-tree is based completely

on the region minimization of all MBRs. Alternatively, the

R*tree goes ahead of this criterion and examines quite a few

others. The criteria taken by the R*tree is the following:

 Minimum region covered by each MBR: This measure

aims at minimizing the region enclosed by MBRs but

not by the rectangles, to decrease the number of paths

pursued during query processing.

 Minimum overlap among MBRs: More the

overlapping among MBR, More is the likely number

of paths followed for a query.

 Minimum of MBR margins: This measure aims at

shaping additional quadratic rectangles to get better

the performance of queries those have a large

quadratic shape. Additionally, minimum region can

be achieved as quadratic objects can be grouped more

easily and the subsequent MBRs on higher levels are

likely to be smaller.

 Maximum storage utilization: Whenever node storage

utilization is small the height of the tree increases due

to additional nodes to accommodate data and hence

time taken to process the query increases. This is true

www.ijcrt.org © 2018 IJCRT | Volume 6, Issue 1 March 2018 | ISSN: 2320-2882

IJCRT1801590 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 429

particularly for multi dimensional query where

sufficient segments of the entry persuade the query.

D) PR-trees

The Priority R-tree [4] is a worst-case optimal substitute to

the spatial tree R-tree, proposed by Arge, De Berg,

Haverkort and Yi, K. in an article in 2004. The prioritized R-

tree is fundamentally a mix of k-dimensional tree and a R-

tree. The term priority refer from four priority-leaves that

represents the most extreme values of all dimensions,

incorporated in each branch of the tree. While answering a

query by investigating the lower-branches, the prioritized R-

tree initialy checks for overlap in its priority nodes. The

lower-branches is checked if the smallest value of the first

dimension of the query is more than the value of the lower-

branches. This gives access to a fast indexation with the

value of the first dimension of the bounding rectangle.

In the Priority R-tree structure the bulk-loading algorithm

utilizes priority rectangles. Window queries can be answered

in on a PR-tree O((N/B)
1-1/d

+T/B)I/Os and the index is thus

the first R-tree variant that answers queries with an

asymptotically optimal number of I/Os in the worst case. For

simplicity, it first describes a two-dimensional pseudo-PR-

tree. The pseudo-PR-tree answers window queries efficiently

but is not a real R-tree, since it does not have all leaves on

the same level. Next it obtains a real two-dimensional PR-

tree from the pseudo-PR-tree. A PR-tree on a set of N hyper-

rectangles in d dimensions can be bulk loaded in

O(N/BlogM/BN/B)I/Os, such that a window query can be

answered in O((N/B)
1−1/d

+T/B)I/Os where T is the number of

reported rectangles, I/O is Input / Output, where each node

(except for the root) has degree Θ(B). Each leaf contains

Θ(B) data rectangles and all leaves are on the same level of

the tree. If B is the number of rectangles that fits in a disk

block, an R-tree on N rectangles occupies Θ(N/B) disk

blocks and has height Θ(logB N).

Fig 5: Historical Progress upto PR Tree

Fig 6: Bounding Rectangles in PR Tree for xy dimension query

CONCLUSION

The R-tree, projected by Guttman, has foundation for all the

forthcoming variations of dynamic R-tree structures. The

R*tree follow an engineering approach and evaluated various

factors focussing on the performance of the R-tree. For this

grounds, it is well thought-out the most strong variant and

has found several applications, in together research and

commercial applications. However, it is significant to

mention that the PR-tree is the first approach that offers

assured worst-case performance and overcomes the

degenerated cases when approximately the entire tree has to

be traversed. Hence, although it is more complex algorithm,

it has to be well thought-out the best variant reported till

now.

REFERENCES

[1] Guttman A.: ‘R-trees: A Dynamic Index Structure

for Spatial Searching’, Proc. ACM SIGMOD Int.

Conf. on Management of Data, Boston, MA, 1984,

pp. 47-57.

[2] Sellis T., Roussopoulos N., Faloutsos C.: ‘The

R
-Tree: A Dynamic Index for Multi-Dimensional

Objects’, Proc. 13th Int. Conf. on Very Large Databases,

Brighton, England, 1987, pp 507-518.

[3] N. Beckmann, H.-P. Kriegel, R. Schneider, and

B. Seeger. The R*-tree: an efficient and robust

access method for points and rectangles. In Proc.

ACM SIGMOD Int. C’onf. on Management of Data,

Atlantic City, 1990.
[4] L. Arge, M. de Berg, H. J. Haverkort, and K. Yi. The priority

R-tree: A practically efficient and worst-case optimal R-tree
In Proceedings of ACM Management of Data (SIGMOD),
 pages 347–358, 2004.

[5] J. T. Robinson. The K-D-B-tree: A search structure for
large multidimensional dynamic indexes. In Proceedings of
ACM Management of Data (SIGMOD), pages 10–18,
1981.

[6] I. Kamel and C. Faloutsos. Hilbert R-tree: An improved R-
tree using fractals. In Proceedings of Very Large Data
Bases (VLDB),
pages 500–509, 1994.

[7] R. Bayer and E. M. McCreight, "Organization and
maintenance of large ordered indexes," in SIGFIDET
Workshop. ACM, 1970, pp. 107-141.

http://en.wikipedia.org/wiki/Tree_data_structure
http://en.wikipedia.org/wiki/R-tree

